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Abstract. The wavelet transform modulus maxima (WTMM) used in the singularity analysis of one frac-
tal function is extended to study the fractal correlation of two multifractal functions. The technique is
developed in the framework of joint partition function analysis (JPFA) proposed by Meneveau et al. [C.
Meneveau, K.R. Sreenivasan, Phys. Rev. A 41, 894 (1990)] and is shown to be equally effective. In addi-
tion, we show that another leading approach developed for the same purpose, namely, relative multifractal
analysis, can be considered as a special case of JPFA at a particular parameter setting.

PACS. 05.45.Df Fractals – 05.45.Tp Time series analysis

1 Introduction

Fluctuations in many natural and artificial phenomena are
found to exhibit fractal characteristics. In applications,
this has been characterized by the so-called singularity
spectrum of some numerical or experimental data [1–9]. To
understand the fractal dynamics underlying phenomenol-
ogy, multiple data capturing different aspects of the phe-
nomenon of interest are sometimes used together in the
analysis. For example, velocity and temperature fluctu-
ations are used to analyze the momentum and energy
aspects of the multifractal hydrodynamic turbulence [1],
blood pressure and heart rate fluctuations to analyze the
cardiovascular aspect of the 1/f -like power spectrum of
the heart rate variability in humans [10], and packet size
and arrival time to analyze the congestion and connectiv-
ity aspects of the multifractal network traffic [11]. Fractal
analysis on multiple data provides an unique opportunity
to relate different manifestations of the fractality of the
phenomenon. In particular, one would suspect some de-
gree of fractal correlation in the data if the fractal gen-
erating mechanisms associated with the data source are
coupled together.

Essential to the notion of fractal correlation is the dis-
tinguishability of singularity spectra. There are fundamen-
tal and practical issues related to the subject. For exam-
ple, consider a standard Np-adic multinomial process on
an interval. It is a multiplicative cascade constructed by
repeatedly dividing the interval into equal Np segments
and assigning (probability) weights pi, i = 1, . . . , Np, from
one generation to the next. Continuing this procedure
ad infinitum leads to a limiting process with no density
(almost surely) and intermittent spiking pattern. Its sin-
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gularity spectrum fπ(α) may be estimated by the Legen-
dre transform of τπ(q) = − log(

∑
pqi )/ log(Np):

fπ(α) = qα− τπ(q)

where α(q) = dτπ/dq. Now, consider a different Nm-adic
cascade (Nm �= Np) generated by weights mi, i =
1, . . . , Nm, and its singularity spectrum fµ(α). If fπ(α) =
fµ(α), one must have

∑
pqi =

(∑
mq
i

)log(Np)/ log(Nm)

.

However, no {pi} and {mi} can be found to satisfy this
equation for all q. Thus, singularity spectra can in the-
ory be distinguished, at least for the important class of
multinomial processes. For more in-depth treatments and
examples, see the excellent book by Pesin [12].

In practice, a different issue can arise. That is, two
singularity spectra may be close to each other within
the limit of finite precision. Consider again the cascades
from above. Let τπ(−∞) = τµ(−∞), τπ(+∞) = τµ(+∞)
(so max({pi}) = max({mi})log(Np)/ log(Nm), min({pi}) =
min({mi})log(Np)/ log(Nm)). Then, fπ(α), fµ(α) will agree
at four important q values: −∞,+∞, 0, 1. With the rest
of pi and mi chosen properly, they can be made almost
indistinguishable (Fig. 1). This problem was addressed by
Lévy-Léhel and Vojak who developed a much sharper mu-
tual multifractal analysis to relate the singularity spec-
tra to the generation of multinomial processes [13]. Riedi
and Scheuring arrived at the similar relative multifrac-
tal analyses with further details on the numerical imple-
mentation [14]; see also [15,16]. For experimental data,
Meneveau et al. introduced a joint partition function
analysis (JPFA) based on the 1D version introduced by
Hentschel and Procaccia [17] and Halsey et al. [18]. With
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Fig. 1. Multifractal analyses of 3-adic π-cascade of weights 0.2, 0.28, 0.52 (symbol “o”) and 5-adic µ-cascade of weights 0.09463,
0.1200, 0.1800, 0.2217, 0.3837 (symbol “+”). (a) τπ(q) and τµ(q); (b) fπ(α) and fµ(α).

essentially the same procedure of estimating the singu-
larity spectrum, these authors characterized fractal cor-
relation in the small scale kinetic energy transfer, heat
concentration and vorticity of the turbulent flow [1]. They
implied that multiple cascades of more than one variables
are responsible for the fractal fluctuation in fluid turbu-
lence; see also [19]. The JPFA has also been applied in
diverse areas such as precision agriculture [20], soil prop-
erty [21], and re-emerged in the general discussion of dis-
crete scale invariance of the multinomial process [22].

In these past studies, JPFA as well as most singular-
ity analyses were conducted on the assumption of one-
dimensional multifractal measures and solved using the
classical box counting procedure. Such applications can
be limited in scope when, typically in the experimental
study, the data is only a fractal function. For functions
created by the integral of multinomial measure under C∞
perturbation, Bacry et al. proved that the singularity anal-
ysis developed for the fractal measure is equally applicable
by using the so-called wavelet transform modulus max-
ima (WTMM) method [2]. Later, the validity of WTMM
was examined by Jaffard for any function [3]. Regarding
WTMM, it was proved that (i) it can yield the upper
bound estimate of the singularity spectrum for any func-
tion and (ii) it is exact for the so-called self-similar fractal
function, as long as the so-called maxima lines are not too
close to each others.

The purpose of this study is to introduce a joint
WTMM method to carry out the JPFA of fractal cor-
relation. While the term correlation is normally linked to
the second order statistics, fractal correlation as estimated
from the singularity spectra is a property of moment of all
orders. Indeed, the primary object of the analysis is the
Hausdorff dimension f(α1, α2) of the support of observ-
ing Hölder exponents α1 and α2. It will be shown that
f(α1, α2) describes a two-dimensional surface that can be
related to how fractal generating mechanisms are coupled
to each other. In addition, it is also found that JPFA is

a more general formulation in that the existing relative
multifractal analysis developed for the similar purpose is
related to JPFA at a particular parameter setting.

Our results are organized into four sections. In the
next section, the background of WTMM is first summa-
rized. The extension to the WTMM-based JPFA and its
connection to the relative multifractal spectrum are then
demonstrated. The test of the method using binomial cas-
cades are presented in Section 3. Concluding remarks are
given in Section 4.

2 WTMM–based fractal correlation analysis

2.1 WTMM singularity analysis

Singularity analysis is built on the notion of Hölder con-
tinuity of functions. Recall that a function x(t) is Hölder
continuous of exponent α′ if there are α′, δ0, C ∈ R+, such
that, for δ < δ0,

|x(t0 + δ) − x(t0)| ≤ C|δ|α′
.

In the neighborhood of x(t0), there exists a supremum
α(t0) that (1) is valid for all α′ ≤ α(t0). The exponent
α(t0) is the Hölder exponent of x(t) at t0. Formally [2, 3],
one can find an nth order polynomial Pn(t) and α(t0) ∈
[n, n+ 1) such that

|x(t0 + δ) − Pn(t0)| ≤ C|δ|α(t0). (1)

It is evident that the Hölder exponent characterizes the
differentiability of the function and, thus, the ability of
the function to fluctuate. For example, α = +∞ for
C∞ functions, α ∈ (n, n + 1) for functions that are only
n times differentiable and α < 1 for functions that are
non-differentiable. The α < 1 case draws the most at-
tention since it means the function can fluctuate in large
amplitude over short time intervals and gives rise to the
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so-called intermittent pattern witnessed in many physical
systems. The Hölder exponent α(t) is also known as the
singularity exponent.

The natural tool to analyze the singularity property is
by the wavelet transform:

Tψ[x](t, a) =
1
a

∫ ∞

−∞
ψ

(
t′ − t

a

)

x(t′)dt′ (2)

where Tψ [x](t, a) is the wavelet coefficient and ψ(t) is the
analyzing wavelet. Muzy et al. showed that the exponent
α(t) can be estimated effectively using the supremum of
|Tψ [x]| along the so-called maxima line formed by the local
wavelet modulus maxima [2–5]. Denote the set of maxima
lines at scale a by L(a) = {l1, l2, · · · , lN(a)}. Bacry et al.
proved [2]

Z(a; q) =
∑

li∈L(a)

Cqi ∼ aτ(q) (3)

where Ci = sup(t,a)∈li |Tψ [x](t, a)| is the supremum of the
modulus maxima of the maxima line li. For functions cre-
ated by the integral of multinomial measures under C∞
perturbations, it was shown that the Legendre transform
of τ(q) yields the Hausdorff dimension of the support
{t, α(t) = α}, f(α);

τ(q) = min
α

(qα− f(α)). (4)

In the literature, Z(a; q) is sometimes referred to as the
partition function due to its analogy to the energy parti-
tion function in statistical mechanics.

2.2 WTMM-based JPFA of fractal correlation

Based on JPFA, the WTMM is generalized to study the
fractal correlation in this section. We present the applica-
tion of JPFA of two data sets. The extension to more data
sets is conceptually similar.

Consider x1(t), x2(t) and their respective sets of sin-
gularity exponent {α1}, {α2}. Let the maxima lines of
|Tψ [xk]| at scale a be denoted as Lk(a), k = 1, 2. A natural
extension of the existing WTMM analysis is to consider a
joint partition function of the form:

Z(a; q1, q2) =
∑

j

Cq11,r(j)C
q2
2,s(j) (5)

where C1,r, C2,s are the modulus maxima of the maxima
lines l1,r ∈ L1, l2,s ∈ L2.

To realize (5), the maxima lines in Lk, k = 1, 2 must
be paired up properly (so the index j can run). As in
most correlation analyses, the objective here is to charac-
terize the property related to observing both singularity
exponents α1 and α2. In terms of the WTMM analysis,
such information should be contained in the modulus of
the neighboring maxima lines. If the time coordinate of
lk,j(a) is denoted by tk,j(a), this means the coefficients
C1,r, C2,s paired up in (5) can be determined by

|t1,r − t2,s| = min
r′

(|t1,r′ − t2,s|) = min
s′

(|t1,r − t2,s′ |). (6)

Once (5) and (6) are established, similar procedure devel-
oped by Bacry et al. [2,4] can be extended to characterize
the geometry associated with the observation of α1 and
α2. In particular, based on Ck,λ ∼ aαk(λ), λ = r, s, (5)
can be given by

Z(a; q1, q2) ∼
∑

j

aq1α1(r(j))+q2α2(s(j))

=
∫ ∫

dα1dα2P(α1, α2)aq1α1+q2α2a−f(α1,α2) (7)

where P(α1, α2) and f(α1, α2) are the probability den-
sity function and Hausdorff dimension of the support of
(α1, α2), respectively. Applying the standard argument of
steepest descent in small a yields

Z(a; q1, q2) ∼ aτ(q1,q2) (8)

where

τ(q1, q2) = min
α1,α2

(q1α1 + q2α2 − f(α1, α2)). (9)

Hence, τ(q1, q2) and f(α1, α2) are Legendre transform
pair:

α1 = ∂τ(q1, q2)/∂q1, α2 = ∂τ(q1, q2)/∂q2,
f(α1, α2) = α1(q1, q2)q1 + α2(q1, q2)q2 − τ(q1, q2) (10)

where
q1 = ∂f/∂α1, q2 = ∂f/∂α2. (11)

Finally, from (9)–(11), the correlation coefficient between
α1, α2 can be determined using τ(q1, q2):

ρ =
cov(α1, α2)
σα1σα2

= −
∂2τ

∂q1∂q2√[
∂2τ
∂q21

∂2τ
∂q22

]

∣
∣
∣
∣
∣
q1=q2=0

(12)

where cov denotes the covariance and σλ denotes the stan-
dard deviation of λ. This expression will be used in the
next section to compare with the numerical result.

In the numerical experiment presented below, we did
not directly apply (8)–(10) to estimate τ(q1, q2) and
f(α1, α2). Instead, we follow an alternative approach mo-
tivated by the canonical ensemble in statistical mechan-
ics [6]. As shown in the Appendix A, this approach is able
to circumvent certain numerical issue caused by the scale
dependent prefactor in (8) [1,6,7].

2.3 JPFA and relative multifractal analysis

Relative multifractal analysis and similar ideas were de-
veloped to characterize fractal correlation between fractal
measures. The main idea is to replace the use of Lebesgue
measure in the traditional fractal analysis [13–16]. Specifi-
cally, consider the partition functions of multifractal mea-
sures π and µ
∑

A∈H
π(A)q ∼ |A|τπ(q),

∑

A′∈H′
µ(A′)q ∼ |A′|τµ(q) (13)
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where H,H′ denote generic partitions of the support and
| · | denote the Lebesgue measure of the set. To examine
the extent to which the singularity of π correlate with µ,
the sets which scale as a power law will be characterized
by using π. For example, the partition function of π is now
written as

∑
π(A)qµ(A)−t(q) ∼ O(|A|) (14)

where the “big O” describes the order relationship
O(|A|) → const. as |A| → 0. Define τπ/µ(q) = sup{t(q)}
for which (14) holds. The relative multifractal spectrum
is obtained via the Legendre transform of τπ/µ. It charac-
terizes the support of the singular behaviour of the form
π ∼ µαπ/µ(q) where απ/µ(q) = dτπ/µ(q)/dq. The relative
multifractal analysis can draw a much sharper distinction
between π and µ. For example, τπ/µ(q) is nonlinear when
π �= µ and τπ/µ(q) = q − 1 when π = µ; see [14] for more
details.

Comparison of (14) with (5) and (8) suggests τπ/µ can
be obtained as the level set of τ(q1, q2) = 0 where

q2 = −τπ/µ(q1). (15)

By switching the role of q1, q2, the singular behaviour of
µ can be gauged by π in a similar way. With the same
arguments, one arrives at τµ/π(q2) defined by the same
level set τ(q1, q2) = 0 where q1 = −τµ/π(q2). It may be
useful to point out that τπ/µ, τµ/π on the q1× q2 plane are
nothing but mirror images of the level set {τ(q1, q2) = 0}
about q2 = 0 and q1 = 0 axes, respectively.

3 Numerical experiments and results

3.1 Coupled random binomial cascades [1]

To test if the WTMM-based JPFA can reliably character-
ize fractal correlation, numerical experiments were con-
ducted on the coupled random binomial cascades studied
by Meneveau et al. [1]. For completeness, we shall intro-
duce the coupled cascades and specific results relevant to
the numerical tests.

The first cascade π, referred to as the π-cascade, is gen-
erated by weights p0, p1. Let Ir1,··· ,rJ denote an interval
segment generated in the Jth iteration where ri ∈ {0, 1}
and

∑
ri2−i is the based-2 coarse-grained representa-

tion of any x ∈ Ir1,··· ,rJ . By the multiplicative rule,
π(Ir1,··· ,rJ ) =

∏J
j=1 prj . The second cascade µ, referred

to as the µ-cascade, is generated by weights m0,m1 and
µ(Is1,··· ,sJ ) =

∏J
j=1msj , si ∈ {0, 1} with the same ad-

dressing scheme.
To couple the cascades, a parameter g and a uniform

random variable γ in [0,1] are used. Let IL, IR be the new
segments created in the construction of the cascades. If
γ < g, the weights assigned to IL, IR for the µ-cascade will
depend on exactly how the weights of the π-cascade are
assigned. In particular, if p0 is assigned to IL (IR) of the
π-cascade, m0 will be assigned to IL (IR) of the µ-cascade

and similarly for p1 and m1. If γ ≥ g, the weight assign-
ment for the cascades will be completely independent from
each other. This way, the fractal generating mechanisms
of the cascades are completely dependent of each other
when g = 1 and independent of each other when g = 0.

For this example, the analytical τ(q, p) has a closed-
form expression:

τ(q1, q2) = − log2(2Y ) (16)

where

Y = γ

(
pq10 m

q2
0 + pq11 m

q2
1

2

)

+ (1 − γ) (pq10 m
q2
0

+
pq11 m

q2
0 + pq10 m

q2
1 + pq11 m

q2
1

4

)

. (17)

To avoid distraction, we leave the technical detail lead-
ing to (16) in Appendix B. Based on (16), the analytical
f(α1, α2) can also be found based on the definition (10).
Both the analytical τ and f will later be used to compare
to the numerical result.

In the numerical experiment, p0 = 0.2, p1 = 0.8 and
m0 = 0.4,m1 = 0.6 were used to generate the π- and
µ-cascades for g = 1, 0.8, 0.3, 0. For each g value, 30 sets
of π, µ cascades of 16,384 points each were generated. Us-
ing the existing WTMM algorithm [2,4], we first locate
the maxima lines and estimate the corresponding wavelet
modulus maxima for the individual cascade. We then fol-
low (6) to pair up the modulus maxima in (5) to define
the joint partition function. As mentioned above, instead
of using (8)–(11), the numerical α1, α2 and f(α1, α2) were
estimated by the alternative approach outlined in Ap-
pendix A. Finally, τ(q1, q2) is determined by the Legendre
transform (9). A set of analyzing wavelets were used in
the numerical experiment (below). The first derivative of
the Gaussian wavelet appears to give the best result that
is reported in this work.

3.2 Numerical results

Typical maxima lines of the coupled cascades are shown
in Figure 2. It is observed that the maxima lines are
“aligned” when the fractal generation is completely de-
pendent at g = 1 and begin to “mis-align” for g < 1.
The power law scaling of Z(a; q1, q2) are found in all cases
(Fig. 3).

In Figure 4, the contour of the level set of f(α1, α2) are
shown on the α1 × α2 plane. Superimposed on these fig-
ures are the analytical f(α1, α2) derived by the Legendre
transform of (16). It is evident that the contour lines vary
systematically with the g value. When the fractal gener-
ating mechanisms are completely dependent of each other
(g = 1), f(α1, α2) describes a one-dimensional curve sup-
ported by the functional relationship α1(α2). This is ex-
pected as any spiking pattern in one cascade automatically
implies the same for the other. As a result, the maxima
lines will converge at the same location in the time-scale
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Fig. 2. Typical maxima lines in the time-scale plane from one of the 30 sets of π- (“o”) and µ-cascades (“+”) with coupling
parameter g = 1.0, 0.8, 0.3, 0.0 (top to bottom). Notice the perfect alignment of maxima lines for the completely dependent
cascades (g = 1). First derivative of the Gaussian wavelet is used in the numerical calculation.

plane. This establishes the one-to-one relationship of ob-
serving the exponents α1 and α2. For g < 1, f(α1, α2)
describes a two-dimensional surface and gives rise to the
oval-shape contour lines (Figs. 4b–4d). This means that
the observation of α1 can take place simultaneously for
a range of α2. As a result, the contour line “open up”
and cover the largest area when the fractal generations
are completely independent from each other at g = 0.

In addition, the contour lines at g = 0 assume a “per-
fect” orientation that aligns with the α1 = 0, α2 = 0 axes
(Fig. 4d).

Figure 4 shows a good match between the numer-
ical and theoretical f(α1, α2). The correlation coeffi-
cient ρ (12) can further provide the quantitative dif-
ference. The analytical ρ can be obtained by substi-
tuting (16) into (12), which yields simply ρ = g.
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Fig. 3. log(A1), log(A2) and log(F) vs. log(a) plots of a typical case of the coupled cascades with g = 0.8. The straight lines
describes the power laws at (q1, q2) = (3,−2), (4,0), (0,0), (−1, 3) (top to bottom). Regression lines are shown as solid lines.
The slope of the regression lines are estimated as α1, α2 and f(α1, α2) based on (14)–(16).
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Fig. 4. Averaged contour of the level set of numerical f(α1, α2) = C for C = 0.6 (“o”), 0.75 (“•”), 0.9 (“�”). Theoretical
contour lines are shown as solid lines. The averaging is based on 30 sets of π and µ cascades. Error bars of one standard
deviation of selected data points are shown. They are based on the scatter of data points inside a pre-defined uniform grid in
the displayed region of the figure. The corresponding g values are (a) 1, (b) 0.8, (c) 0.3, (d) 0. For g = 1, f(α1, α2) “collapses”
into a one-dimensional curve. The projection of the theoretical f(α1, α2) is shown as the dotted line. {f(α1, α2) = C} consists
of only two points: C = 0.9 (“�”), C = 0.75 (“square”), C = 0.6, (“o”), are shown (in red).
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Table 1. Averaged and analytical ρ values for g =
0, 0.3, 0.8, 1.0.

g 0.0 0.3 0.8 1.0

ρ 0.016 0.280 0.775 0.838

The numerical ρ is estimated directly from (12) using the
finite difference approximation for the derivatives. Shown
in Table 1 are the averaged ρ values based on the 30 sets
of π, µ. It is evident that the numerical data matches very
well with the analytical result for g ≤ 0.8. For the com-
pletely dependent case (g = 1), the discrepancy of ∼16%
is quite large. This is largely contributed by the finite dif-
ference approximation of the small second derivative of
τ(q1, q2) at g = 1.

In addition to the Gaussian wavelet, the Daubechies
family and coiflet family wavelets were also used to com-
pare the result [23]. While the scaling characteristics of
A1,A2,F are captured in all cases, the degree of accu-
racy varies. See, for example, the contour of the averaged
{f(α1, α2) = C} obtained by the Haar wavelet (first or-
der Daubechies wavelet) in Figure 5. Using higher order
Daubechies or coiflet wavelets does not yield qualitatively
different result. In all cases, there is a reasonable agree-
ment in the region of small α1, α2. However, discrepancy
starts to develop and becomes most pronounced in the
area of large α1, α2. These Hölder exponents are related to
large negative q1, q2 values. The loss of accuracy for large
negative q1, q2 appears to be universal for the two wavelet
families we studied. It is interesting to note the sharp con-
trast with the Gaussian wavelet results (Fig. 4). However,
we could not find a satisfactory answer for the superior
performance of the Gaussian wavelet in the present appli-
cation.

Given the numerical data, we also checked the rela-
tionship (15) between JPFA and RMA. We first took the
numerical τπ/µ(q1) to estimate the level set τ(q1, q2) = 0.
We then applied the so-called deterministic algorithm pro-
posed by Riedi and Scheuring to find τπ/µ. Briefly, the unit
interval (0,1) is first divided into smaller intervals I(n)

k of
size 2(−n), n = 1, 2, · · · and then used to define a partition
satisfying µ ∼ δ. Finally, τπ/µ is estimated as the power
law exponent in

∑
πq ∼ δτπ/µ ; see (14). In Figure 6, the

τπ/µ(q1) estimated by the two different approaches are
shown to match well. Similar match is also found for τµ/π
(not shown).

4 Concluding remarks

In this work, a WTMM-based technique is introduced for
the first time to estimate the fractal correlation in the
framework of the joint partition function analysis pro-
posed by Meneveau et al. [1]. As WTMM has been proven
to be one of the most effective tools for singularity analy-
sis [2,3], it is shown that the extension proposed above can
also capture accurately the fractal correlation from data

Fig. 5. Averaged contour of the level set of the numerical
f(α1, α2) = C for g = 0.8 and C = 0.6 (“o”), 0.75 (“•”),
0.9 (“�”). The result is based on the Haar analyzing wavelet.
Theoretical contour lines are shown as solid lines. Error bars
of one standard deviation from selected data points are shown.
The same case analyzed by the Gaussian wavelet is shown in
Figure 4b.

fluctuation. We also show that another leading idea, rela-
tive multifractal analysis, developed for comparing multi-
fractality, can be considered as a special case of JPFA at
a particular parameter setting.

The application using the coupled cascades with var-
ious coupling strength shows interesting results. It is en-
couraging to see that distinctive effect from the coupling
of multifractal generating mechanisms does exist and can
be captured in f(α1, α2) using the WTMM-based JPFA.
In particular, the geometry of f(α1, α2) changes from a
one-dimension object for completely coupled generating
mechanisms to a “fully expanded” two-dimensional sur-
face for completely independent generating mechanisms.
This trend is at least true for the important class of bino-
mial cascades and is intriguing in its own right. Intuitively,
it is possible to have more exotic cases where the fine struc-
ture of these manifestations vary. For example, a regular
cascade coupled with one that has time-varying weights.
However, it is plausible that the general characteristics
remain, namely, the stronger the coupling bewteen the
multifractal generating mechanisms, the “slenderer” the
surface f(α1, α2) becomes. This, as well as, applications
on different experimental data are the interesting future
expansions of this work.
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Fig. 6. τπ/µ(q) estimated by WTMM-based JPFA (“o”) method (from the contour line of τ (q, p) = 0) and the deterministic
algorithm porposed (solid line); see text. The solid lines shown are based on the ensemble average with ± 3 standard deviation
boundaries plotted as long-dashed lines. The g values are (a) 1, (b) 0.8, (c) 0.3, (d) 0.

Appendix A

The Legendre transform (10) relies on using τ estimated
from (8). However, there are known factors, such as lacu-
narity [1, 6, 7], that introduce oscillatory, scale dependent,
prefactor. This results in the poor estimate of τ(q1, q2). A
remedy to this problem is to introduce

ν(j, a; q1, q2) =
Cq11,r(j)C

q2
2,s(j)

Z(a; q1, q2)
. (A.1)

Then, by (8) and (10), one has

∂Z(a; q1, q2)/∂q1 ∼ aτ(q1,q2) log(a)∂τ(q1, q2)/∂q1 =

aτ(q1,q2) log(a)α1. (A.2)

Note the prefactor log(a)α1 in (A.2) that varies logarith-
mically with a. From (A.2), one has

∑

j

ν log(C1,j) =
∂Z/∂q1
Z

. (A.3)

Substituting (A.2) into (A.3) yields

A1(a; q1, q2) =
∑

j

ν(j, a; q1, q2) log(C1,r(j)) ∼ aα1(q1,q2).

(A.4)

Note the prefactor in (8) is effectively canceled in (A.4).
Similarly, one can show

A2(a; q1, q2) =
∑

j

ν(j, a; q1, q2) log(C2,s(j)) ∼ aα2(q1,q2).

(A.5)
Finally, based on (A.1), one has

∑
ν log(ν) = q1

∂Z/∂q1
Z

+ q2
∂Z/∂q2
Z

− log(Z). (A.6)

Substituting (10) and (A.2) into the above results in

F(a; q1, q2) =
∑

j

ν(j, a; q1, q2) log(ν(j, a; q1, q2)) ∼ af(α1,α2). (A.7)

In the numerical experiment, α1, α2 and f are estimated
from the exponents in (A.4), (A.5) and (A.7).

Appendix B

The derivation of the analytical τ(q1, q2) is based on the
coarse grained joint partition function for the coupled cas-
cades:

ZJ(a; q1, q2) =
∑

π(Ir1,··· ,rJ )q1µ(Ir1,··· ,rJ )q2 .
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From the combination of γ completely dependent and
(1 − γ) independent proportions, ZJ is found explicitly as

ZJ(a; q1, q2) ∼ (2Y )J

where Y is given by (17). Letting J → ∞, ZJ → Z
and (16) is obtained as the power law exponent of Z ∼
aτ(q1,q2).
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